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I. SCAN STATISTICS FOR DATA FUSION

A. Background

In [22] we are interested in a submarine detection with a barrier sensor network [26], which is composed

of an acoustic source and a band of passive sensors as shown in Fig. 1. Such a setup is useful for region

denial and coastline monitoring. Suppose that each sensor makes a binary decision—‘0’ or ‘1’—via

a simple comparison of its matched filter output with a given threshold, and then a fusion center (FC)

collects the local results to make a system-level inference. Here, we focus on how to fuse these distributed

decisions.

Suppose that the submarine is noncooperative and that the sensor network does not have knowledge of

its location and acoustic reflection model. As a result, the probabilities of local detection are unavailable,

and the optimal fusion rule [11] is irrelevant. A suboptimal alternative is the counting rule test (CRT) [19],

which counts the total number of 1’s and compares it to a given threshold to infer whether a submarine

exists. The CRT is a global data utilization approach, and it equally weights all the local decisions without

considering their spatial distribution. However, since most reflection energy from a submarine is focused

in a narrow conical area [24], only a subset of sensors can produce reliable local detections, while others

are generally dominated by background noise, particularly at low signal-noise-ratio (SNR) [26]. If one

could find that significant area and utilize only it to make a final decision, the system-level performance

would be improved. An emerging local detection fusion approach is the scan statistic [15]. It slides a

window around the sensor field, and picks up the most significant compact area to make a system-level

detection. Here, the significance is defined by the number of 1’s falling into the window. The key feature

of a scan statistic is that its threshold can be set accurately to produce any desired system-level false

alarm rate. Here we will show that the scan statistic can outperform the CRT if the size of the sliding

window is properly selected.
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Fig. 1. A barrier sensor network is composed of an acoustic source and a narrow passive sensor band, and it could be used to
detect a submarine out of the sensor band. Since the acoustic reflection of a submarine is angle dependent, only those located
in a particular zone are able to reliably detect the echoes if the SNR is low.
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Fig. 2. An illustration of a scan statistics for different sensor fields. If no target appears in the surveillance area, the sensors
declaring detection follow a uniform distribution. Otherwise, certain local detection clusters may happen. A scan statistic test
slides a rectangle window across the sensor filed to check whether a ‘1’ cluster exists.

B. Geometry Dependent Local Detection

Suppose sensor noises be independent and identically distributed (i.i.d.) zero-mean complex Gaussian,

and suppose that the submarine has a Rayleigh fading model [24, pp.189]. If each sensor makes a local

test based on the magnitude square of its matched filter output, the local false alarm rate and probability

of detection for the ith sensor can be written as [26]

p
f
= exp(−τ) and p

di
= exp(−τ/(1 + βi)), (1)

where τ denotes the universal threshold, and βi relates to the reflection geometry and transmission power.

We assume that the source and the sensors are at the same depth as the submarine. Let (xs, ys),
(xt, yt), and (xi, yi) respectively denote the coordinates of source, submarine, and sensor i. The prop-

agation distance for the path source-submarine-(the ith sensor) is di =
√

(xs − xt)2 + (ys − yt)2 +√
(xi − xt)2 + (yi − yt)2, while vi = arctan(xi−xt

yi−yt
) is a supplementary angle. Let the principle reflection

angle be q; then βi could be modeled as [26]

βi = c0f1(vi, q)/di, (2)

where c0 is a power related constant, di is responsible for the propagation attenuation, and the Butterworth

beampattern f1(vi, q) =
[
1+ (vi−q

W )2K
]−1

models the aspect-dependent reflection of the submarine [26].

In f1(·), 2W denotes the 3dB bandwidth, and K determines the contrast.

Let a sensor take the value of ‘1’ if there is a detection; otherwise it takes the value of ‘0’. Since

the submarine parameter set {xt, yt, q} is unknown, p
di
’s are unavailable; therefore, the optimal Chair-

Varshney rule [11] is irrelevant. A suboptimal approach is the CRT, which sums up all the local decisions.

However, as a submarine may only affect a subarea of the sensor network due to the aspect-dependent

reflection, a smarter local detection fusion approach—the scan statistic—deserves attention.

C. Scan statistic Based Detection Fusion

1) From Submarine Detection To Cluster Detection: A scan statistic was developed to seek clusters in

a spatial or (and) time spanned data set [15]. Briefly speaking, it slides a window across the observation

domain, and utilizes the most significant data subset to infer the hypothesis. The key is that despite the

windows being slid (as opposed to “hopping” to adjacent but nonoverlapping partitions) its false alarm
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rate is explicit. The shape of the window is usually problem dependent. It can be a square, rectangle,
circle, or ellipse, and no uniformly best one exists.

Let the sensors be uniformly distributed in the barrier band. With the i.i.d. noise assumption, the
sensors declaring ‘1’ are uniformly dispersed under H0. If a target invades the surveillance area and if
the mainlobe of its reflection pattern falls into the sensor field, a certain number of sensors within this
zone will declare ‘1’. Therefore, a local detection cluster may form, and the target detection problem
could be converted to a ‘1’ cluster detection within the sensor field:

• H0: no significant ‘1’ cluster exists;
• H1: a nonempty zone Z has a locally significant ‘1’ cluster.

In general, the zone Z specified in Hs1 is unknown; some heuristic conjectures such as the size of Z are
necessary.

2) Bernoulli Sensor Field: In this case, N senors are regularly deployed into N = M1×M2 uniformly
divided cells, and each cell exactly contains one sensor as shown in Fig. 2(a). A shape match between the
local detection cluster and scanning window would improve the test performance. Unfortunately, since
the cluster varies with the submarine location and the skewness of its pattern mainlobe, a perfect footprint
coincidence may not be guaranteed. Here, a suboptimal rectangle window is employed. As the width of
the sensor band is thin, it will be included in the window for scanning convenience, see Fig. 2. Let Xlk

denote the binary local decision of the sensor at a certain cell, and let the discrete length of the window
be w, where 1 ≤ w ≤M1, and then the total number of ‘1’ within the window is

Ym =

m+w−1∑
l=m

M2∑
k=1

Xlk =

m+w−1∑
l=m

Zl, (3)

where 1 ≤ m ≤ M1 − w + 1, and Zl ,
∑M2

k=1Xlk. The two dimensional summation for Xlk’s can be
equivalently converted into a one-dimensional problem on Zl; this is an important difference from [16].
The scan statistic S(w,M1) is defined as [15, p.273]

S(w,M1) = max {Ym; 1 ≤ m ≤M1 − w + 1}, (4)

and the FC makes a system-level decision based on{
S(w,M1) < TB, declare H0

S(w,M1) ≥ TB, declare H1,
(5)

where TB corresponds to a specified significance level.
Intuitively, a scan statistic divides a sensor field into several partially overlapped subareas, and then

selects the most significant one to make a decision. If w = M1, the scan statistic becomes a CRT.
3) Poisson Sensor Field: This subsection concentrates on a random barrier sensor network: 1) the

total number of activated sensors, say N , has a Poisson distribution; 2) those activated sensors are
uniformly distributed within the barrier band. Suppose that the initial distribution of activated sensors
is a homogeneous Poisson process with density λ; we have p(N) = (λA)Ne−λA/N !, where A denotes
the area of the sensor band. Let the sensors be within x1 ≤ x ≤ x2 and y1 ≤ x ≤ y2, and then we get
A = (x2 − x1)× (y2 − y1). The locations of sensors are i.i.d., and have a uniform pdf

f(x, y) =

{
1
A x1 ≤ x ≤ x2 and y1 ≤ x ≤ y2

0 otherwise.
(6)

With an i.i.d noise assumption, the number of sensors declaring ‘1’ under hypothesis H0 also has a
Poisson distribution with density λf = λp

f
, and they are uniformly located within the sensor field.

Under H1, the distribution of sensors declaring ‘1’ is no longer uniform, and a ‘1’ cluster should form.
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(a) Bernoulli (b) Poisson
Fig. 3. Comparisons of simulated and approximated system-level false alarm rates of scan statistic in Bernoulli and Poisson
sensor fields. Each simulated curve is based on 1000000 runs.

We use a window to scan the sensor band to check whether a ‘1’ cluster exists. Continuous scanning

would be the best choice for a given window size; however, we prefer a discrete scanning scenario again

for analysis simplicity: uniformly dividing the sensor band into M1 contiguous narrow slices as shown

in Fig. 2(b). Let X̄i stand for the number of sensors declaring ‘1’ in the ith slice, and let the window

cover exactly w slices; hence, the total number of ‘1’ within in the window is Ȳm =
∑m+w−1

l=m X̄l, where

1 ≤ m ≤ M1 − w + 1. Here the two-dimensional data summation can also be reduced to a scalar case.

The scan statistic S(w,M1) is defined as

S(w,M1) = max {Ȳm; 1 ≤ m ≤M1 − w + 1}, (7)

and the FC makes the system-level decision based on{
S(w,M1) < TP , declare H0

S(w,M1) ≥ TP , declare H1,
(8)

where TP corresponds to a given significance level again.

D. Performance Analysis for Scan Statistic

1) Bernoulli Sensor Field: The system-level performance including the false alarm rate P s
f and the

probability of detection P s
d will be discussed for scanning a Bernoulli sensor network. With the i.i.d.

sensor noise assumption, the Xlk’s are i.i.d. Bernoulli random variables with parameter p
f

in the absence

of a target. Therefore, the Zl’s are independent and subject to a binomial distribution

Pr{Zl = i} =
(
M2

i

)
pi

f
(1− p

f
)M2−i (9)

under H0. The system-level false alarm rate is defined as

P s
f = Pr

{
S(w,M1) ≥ TB|H0

}
, (10)

and it is a function of Pr{Zl = i} and window size w. The analysis of P s
f is intricate, and a closed-form

expression is unavailable. In [14], an accurate approximation is given as

P s
f � 1−GTB ,w(2w)

[
GTB ,w(2w)

GTB ,w(2w − 1)

]M1−2w
, (11)
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Fig. 4. A comparison of ROCs for scan statistic and CRT in Bernoulli and Poisson sensor fields, where pf = 0.05 and w = 7.

where GTB ,w(2w) � Pr{S(w, 2w) < TB} and GTB ,w(2w − 1) � Pr{S(w, 2w − 1) < TB} can be

calculated by the procedure in the Appendix. Intuitively, GTB ,w(2w) and GTB ,w(2w − 1) denote the

statistical results for a w-size window scanning two random sequences respectively with length 2w and

(2w − 1). To verify the approximation accuracy of (11), we plot several curves of P s
f versus the scan

statistic threshold TB in Fig. 3(a), where M1 = 101 and M2 = 6. Each curve is obtained by 1000000

Monte Carlo runs. From this figure, we see that (11) exhibits good approximation performance, and

would be effective for false alarm analysis.

The system-level probability of detection is defined as

P s
d = Pr

{
S(w,M1) ≥ TB|H1

}
. (12)

However, since the conditional pdf of p(Zi|H1) is unavailable, P s
d cannot be analytically derived or

accurately approximated. In general, it can only be analyzed via simulation; since it is target dependent

in any case, this seems acceptable.

2) Poisson Sensor Field: With an i.i.d. sensor noise assumption, the X̄l’s are i.i.d. Poisson random

variables

Pr{X̄l = k} = (λf Ā)ke−λf Ā/k! (13)

under H0, where Ā represents the area of each slice. The system-level false alarm rate is

P s
f = Pr

{
S(w,M1) ≥ TP |H0

}
. (14)

A closed-form expression for P s
f is not available, but again it can be approximated with (11). (Actually,

approximation (11) is a general result). To approximate (14), we should employ (13) instead of (9) in

the calculation of GTP ,w(2w) and GTP ,w(2w− 1). The approximation accuracy for the Poisson scenario

is demonstrated by Fig. 3(b). In the simulation, we choose M1 = 101 and λf Ā/p
f
= λĀ = 25. Each

curve is obtained by 1000000 runs.

E. Numerical Results

1) Bernoulli Sensor Field: This subsection compares the performance of the CRT and the scan statistic

in submarine detection with a Bernoulli sensor network, which covers a rectangle area
{
(x, y)|−2500m ≤
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Fig. 5. The system-level probability of detection P s
d as a function of window size w for scan statistic in Bernoulli and Poisson

sensor fields, where pf = 0.05, P s
f = 0.01, and SNR = 5 dB.

x ≤ 2500m, 0 ≤ y ≤ 250m
}

in two dimensions. The sensor field is uniformly divided into 6×101 cells,

with each cell containing exactly one sensor node. The acoustic source is located at (xs = 0, ys = 0).
Under H1, a submarine is fixed at (xt = 0, yt = 1000m), while q is uniformly distributed within [−π, π].
c0 is chosen as c0 = 2�

√
(xt − xs)2 + (yt − ys)2 to adjust propagation loss, and � is defined as the

source-to-receiver SNR.

The detection performance is compared with the help of the receiver operating characteristic (ROC).

Let the local false alarm rate be p
f
= 0.05. Fig. 4(a) gives the ROCs for the CRT and scan statistic with

different SNRs, while Fig. 5(a) depicts the relationship between the system-level probability of detection

P s
d and window size w for the latter at a given SNR and system-level false alarm rate P s

f . From these

figures, we see that: 1) for a given SNR, the scan statistic with a properly selected window size has

better detection performance than the CRT. The reason for this is that if a submarine can only affect a

part of sensor network—the detectable zone, picking up that subarea may be better than interrogating

the entire field. 2) The window size w can affect the ROC of a scan statistic. Since the shape of local

detection cluster is not available, the best window size is unavailable. From Fig. 5(a), we see that when

w varies from 4 to 7, P s
d ’s do not exhibit a significant change. In other words, the scan statistic has a

certain robustness in window size selection.

2) Poisson Sensor Field: This subsection compares the detection performance of the CRT and the

scan statistic for a Poisson sensor network. The sensor band shares the same coverage as that in the

previous example. The number of sensors is a Poisson variable with density parameter λ = 1/2500. The

sensor field is sliced into 100 rectangles, and each with size 50× 250 m2. The acoustic source and the

submarine setup under H1 are the same as the previous subsection.

Let pf = 0.05. Fig. 4(b) gives the ROCs of those approaches with different SNRs, while Fig. 5(b)

depicts the ROCs for the scan statistic approach with different window sizes at a given SNR and P s
f .

The observations are similar to those of the Bernoulli case.

II. CHANGE DETECTION BY RUNNING CONSENSUS

In [8] the basic change detection problem considered in this work is now formalized according to a

very classical setup [1]. In the following, the index j ∈ {1, 2, . . . ,M} identifies a specific sensor, while

n ≥ 1 is the (discrete) time index. The n−th observation xn,j collected by the j−th node follows the
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null-hypothesis distribution f0(x) until a deterministic but unknown time n0. From n0 (included) on, the
distribution for all j suddenly changes to f1(x).

The goal of the network is to discover the change as soon as possible, with a constraint on the
average time between false alarms. Throughout the paper, we make the basic assumption of statistical
independence across time and across sensors. We have, for all j,

f0(x) : x1,j , x2,j , . . . , xn0−1,j

↘
f1(x) : xn0,j , xn0+1,j , . . .

Note that, at each time slot n, the network globally collects a vector of observations:

xn = [xn,1, xn,2, . . . , xn,M ].

A. Classical parallel architecture

If a fusion center is available, the quickest detection problem can be addressed by means of the
well-known Page’s test [1], which is basically made of the following three elements.

• The CUSUM log-likelihood of the data

Sn =

n∑
i=1

M∑
j=1

log
f1(xi,j)

f0(xi,j)
. (15)

• A recursion rule in the form

Sn = max

0, Sn−1 +

M∑
j=1

log
f1(xn,j)

f0(xn,j)

 , (16)

where we explicitly note that the log-likelihood resets each time it falls below zero, which is thus
the point from which Page’s test restarts.

• A decision rule prescribing that a change is declared as soon as a threshold γ is crossed, implicitly
defining the test stopping time as

N = arg min
n
{Sn ≥ γ}. (17)

The usual optimality criterion for assessing the test performance is that of imposing a constraint on the
false alarm rate, and accordingly minimizing the detection delay. The former is defined as the reciprocal of
the average sample size under the null hypothesis, 1/E0[N ], where E0,1[·] denotes expectation computed
under distribution f0,1(x). The latter is approximated by E1[N ], which is in fact an upper bound on the
real delay, corresponding to the assumption that the CUSUM is exactly zero at time n0. The precise
computation of E1[N ] would instead require knowledge of the exact value of the CUSUM statistic at n0,
and it is usually intractable [1], [25].

The above key quantities admit closed form approximations mainly relying upon neglecting the excess
over the threshold of the test statistic at the stopping time [1], [25]. Specifically, the false alarm rate
and detection delay of the centralized system (suffix c consistently appended) are related to the detection
threshold via

Rc(γ) ≈ M ∆01

eγ − γ − 1
,

Dc(γ) ≈ γ + e−γ − 1

M ∆10
,
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where ∆01 is the Kullback-Leibler divergence [1] from f0(x) to f1(x), and ∆10 is similarly defined. By
combining (18) and (18) the basic operational curve Dc(R) of the detector, that expresses the detection
delay as a function of a prescribed false alarm rate R, can be obtained. In the regime of large γ
(corresponding to small false alarm rates), the operational curve can be conveniently approximated by
the following closed form

Dc(R) ≈ log (M ∆01/R)

M ∆10
. (18)

Note that the overall divergence pertaining to a single time slot is M ∆, accounting for the fact that, at
each time slot, M independent observations are collected.

B. Running consensus for quickest detection

As already anticipated, the main strategy proposed in this work for quickest distributed detection in
fully flat networks relies upon the running consensus algorithm. Details about this latter can be found
in [7], [9] and will not be repeated here for space reasons. In the following we limit ourselves to report
the basic elements in order to make the paper self-contained.

The network topology is formalized by an undirected graph (V, En) where V = {1, 2, . . . ,M} is
the vertex set (sensors) and En the edge set that describes sensors’ connections. To address the general
problem of random and time-varying sensors’ connections, we allow En to be random and dependent
upon the time slot n. Accordingly, at each n, M data are collected by the network and a realization of
En is drawn, meaning that some subset of V is selected, and the corresponding nodes share their states
according to a standard consensus algorithm [6]. The exchanged data are not simply the measurements,
but rather the suitable detection statistics computed by the nodes, summarized in the state variables Sn,j .

Stressing on the flat architecture of the system, we would like to achieve the following goals.
• Each sensor implements its own test by comparing the local statistic Sn,j to a detection threshold
γ. The j−th test accordingly stops at a random time

Nj = arg min
n
{Sn,j ≥ γ}. (19)

• No post-detection fusion of the local decisions is allowed, the data fusion being instead embodied
in the running consensus protocol.

• The decision taken by any of the sensors must be representative of the (unavailable) global, cen-
tralized decision. Accordingly, it must be possible to retrieve a reliable decision by querying an
arbitrary node in the network.

These design goals basically require asymptotic (with n) similarity of Sn,j with the centralized detection
statistic Sn, for all j. To this aim, we propose the following update rule, that is essentially borrowed
from the running consensus data-exchange protocol [7], [9]:

Sn,1
Sn,2

...
Sn,M

 = Wn


Sn−1,1

Sn−1,2
...

Sn−1,M

+MWn


log f1(xn,1)

f0(xn,1)

log f1(xn,2)
f0(xn,2)

...
log f1(xn,M )

f0(xn,M )


or, in a more compact form

Sn,j = U({Sn−1,j}Mj=1). (20)

The M by M consensus matrices Wn, n = 1, 2, . . . , are iid (independent identically distributed) and
doubly stochastic. To better highlight the physical meaning of the above matrices, let us consider the
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Fig. 6. Empirical realizations of the running consensus statistics, in a network made of 10 sensors (thinner gray lines, almost
superimposed to each other). The bold red line refers to the centralized system.

classical example of a pairwise averaging algorithm, according to which, at time n, a pair (h, k) of
sensors is uniformly and randomly selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (21)

where I is the identity matrix, and uk is a vector of all zeros, but for the k−th entry which is unity.
Using this matrix into the update equation simply amounts to let sensors h and k replace their state by
the corresponding arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running consensus is finally obtained by merging the update
rule (20) to the classical Page’s recursion (16), the overall recursion (at the j−th node) becoming∗

Sn,j = max{0,U(Sn−1,j)}. (22)

Before going into the details of performance evaluation, it is instructive to start from empirical
evidences. Figure 6, obtained by computer experiments, displays the behavior of the ideal centralized
statistic Sn (bold red curve), along with the locally computed sensor statistics Sn,j (tiny gray curves) of
the running consensus Page’s detectors. A general trend is observed: in a first portion of the time axis,
the statistics often reset to zero; once that the change in distribution takes place, they tend to grow up
to eventually cross the detection threshold. As a matter of fact, the different running consensus statistics
always behave quite similarly, and, in addition, closely track the statistic of the centralized system. This
in turn implies that the instants of detection events, i.e., the times at which the curves cross the positive
threshold, are almost the same for the different statistics, leaving hope that the performance of the running
consensus quickest detectors may approach the theoretical limit represented by the performance of the
centralized system.

∗While the update rule U is linear, the addition of Page’s reset rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.
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Fig. 7. Network topologies for the two examples considered in Sect. II-D. The circles represent the vertex set V , while the
random edge set En is selected among the possible connections shown by lines between the vertices.

This behavior can be explained as follows. Running consensus introduces strong dependencies among
nodes by continuously propagating information across the network, and this implies that the change is
detected at almost equal times at different sensors. As time elapses, the effect is emphasized and the
statistics Sn,j at different j become closer and closer each other.

As a consequence, provided that the algorithm evolves for a sufficiently long time, a reliable estimate
of the instant at which the distribution-change took place can be obtained by querying any of the M
nodes, and the performance of the running consensus scheme can be computed with reference to any of
the sensors, according to the genuinely flat nature of the system.

C. Performance evaluation

A complete derivation of the performance formulas is not reported with all the details here; we refer
the reader to [10]. The arguments below, however, are sufficient for a complete understanding of the
main ideas behind the formal derivations.

It is convenient to regard the local detection statistic as Sn,j = Sn+en,j , where the difference between
the current state Sn,j and its centralized counterpart Sn is measured by an error term, that is assumed
for now to be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribution f0(x). Until a threshold crossing occurs (either
because a real change happened, or because a false alarm is going to be declared), the j−th sensor may
have experienced a certain number of resets. This number, however, does not depends only upon Sn, but
it is also determined by the behavior of the error term en,j . On the other hand, it is reasonable to assume
that, for γ � ε, the role of the centralized statistic Sn as to the threshold crossing will be predominant.
Formally we have the following: Let us define

N = arg min
n
{Sn > γ − ε},

N = arg min
n
{Sn > γ + ε},

that are nothing but the stopping times pertaining to a centralized Page’s test with modified thresholds.
Obviously, we have E0,1[N ] ≤ E0,1[Nj ] ≤ E0,1[N ]. Let us focus on f1(x). Applying the last inequality,
we have, for the detection delay at the j − th sensor:

Dc(γ − ε) ≤ Dj ≤ Dc(γ + ε).

In the regime of large γ (i.e., of small false alarm rate), we can neglect the effect of ε (which is � γ),
and obtain the approximate operational characteristic of the running scheme:

Dr(R) ≈ log (M ∆01/R)

M ∆10
. (23)
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Fig. 8. Operational curve of the running-consensus quickest detector. The detection delay is shown as function of the false
alarm rate for the Bernoulli example considered in Sect. II-D. Dots refer to simulations of the detector, while the continuous
and dashed curves show the operational characteristic of the ideal centralized system.

We have assumed so far that the error is bounded. Such assumption is usually made in sequential
analysis for managing the errors due to the excesses over the thresholds, and provides simple refinements
of Wald’s approximations, see, e.g. [25]. We would like to mention that an extension of these results
to the case that the errors are bounded only on the average can also be pursued, but this would require
rather advanced mathematical tools [23].

D. Numerical experiments

In this section we present a summary of the results obtained from Monte Carlo simulations made in
two typical detection setups. As a first example, we assume the measurements taken by the sensors as
iid binary variables taking value in {0, 1}, drawn from a Bernoulli distribution. Initially, the outcomes
are equiprobable, while after the change the probability of 1 slightly modifies to 0.505. Note that the
two hypotheses are “quite close”, thus leading to a challenging detection task.

As to the exchanging protocol, we assume that the nodes communicate only with their direct (single
hop) neighbors. The network topology is schematically displayed in the left plot of Fig. 7, where
neighboring sensors are connected by straight lines. It is also assumed that at each time step v pairs
of neighboring sensors are selected to average their own states. In the following examples we use v = 5.

The results of 104 Monte Carlo simulations, with M = 10 sensors, are shown in Fig. 8, where the
empirical operational characteristic of the detector is compared to the operational curve Dc(R) obtained
by combining (18) and (18); also shown is the closed-form approximation in eq. (18), valid for tight
false alarm rates R. As it can be seen, the match with Dc(R) in this case is excellent, and quite accurate
is also the match with (18) in the regime of interest.

Consider now a second case study, namely, the classical change detection problem of zero-mean
Gaussian observations with different variances. Without loss of generality, we assume that the variance
under the null hypothesis is set to 1, and that pertaining to the distribution after the change is σ2. As
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Fig. 9. Operational curve of the running-consensus quickest detector. The detection delay is shown as function of the false alarm
rate for the Gaussian example of Sect. II-D. Dots refer to simulations of the running consensus strategy, while the continuous
and dashed curves pertain to the ideal centralized system. Asterisks show the operational curve of a bank of Page’s detectors.

communication strategy, we adopt here the same repeated pairwise averaging (v = 5), but with the
topology shown in the right plot of Fig. 7.

In Fig. 9 we report the results from 104 Monte Carlo iterations with M = 10 sensors, and a value
of σ = 1.032, that is, a value very close to 1 that again leads to a difficult detection task. Comments
similar to those of the previous example apply, and the match appears to be satisfying for any practical
purposes.

To further highlight the benefits of the (pre-detection) data fusion achieved via running consensus,
let us consider a simpler detection scheme working in flat architectures: a bank of Page’s detectors that
independently process the locally observed data, without any form of on-the-fly cooperation. In this case,
as soon as one of these filters declares a change is the distribution of the monitored phenomenon, a
broadcast message is sent to the whole system to halt the detection task, and the decision of the quickest
sensor is taken as the global decision of the bank. As seen in fig. 9, the running consensus scheme largely
outperforms the bank in terms of detection performance, even though this should be expected to be paid
in the coin of communication burden.

III. DATA FUSION WITH INTERMITTENT SENSORS

A. The Problem

In undersea surveillance of large areas, multistatic sonar networks show promise in the ability to use
many sensors to cover a large area with overlapping detection coverage, the achievement of higher data
rates from use of multiple sensors (receivers) to process a single active transmission from a source, and in
the geometric diversity that can be achieved by selecting receiver locations. However, it has been observed
from at-sea testing that sensor detection performance varies significantly over the sensor network and
for a single sensor over time. In particular, due to geometric, environmental, and geographic effects a
target may be detected by a given sensor with high probability over a number of scans and then suddenly
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Fig. 10. Comparison of the time to terminate false and true tracks for various track termination tests.

fade from view as the sensor detection probability decreases drastically. A key tracking issue therefore
becomes how to adapt the tracking system to account for this fading detection performance in a multistatic
active sonar problem. In this paper we address the track termination aspect of this problem. We consider
a centralized track management model that processes time ordered measurements from all sensors and
include sensor origin information. The sensor detection performance is modeled as a two-state Markov
chain with high and low detection states. Target-originated measure- ments (binary detection events) can
therefore be described us- ing a Hidden Markov Model (HMM) structure.

There is a well-developed base of literature covering track termination for sensors with a fixed
probability of detection (Pd) of the target on a single scan (see e.g., [2]). Examples include K/N tests
(a track is terminated if K or fewer detections are received in the last N scans) and track score tests.
Track score tests may include the SPRT or Bayesian sequential tests. If the track score (related to the
probability that the detection sequence is the result of a true track) falls below a certain value, the track
is terminated. However research pertaining to the track termination problem for sensors with Pd based
on a Markov model has only recently been considered [12].

In [3] we analyze the performance of K/N-based and sequential track termination tests when target-
originated measurements are described by a HMM with high and low Pd Markov states. Using only the
binary detection events, it is shown that the K/N test outperforms the Page test over a portion of its
operating characteristic region. This result is surprising considering the fact that the Page test is proven
to be the optimal sequential test for quickest detection of a change in measurement distribution and we
show how when the HMM-based detection statistics are used, a key assumption in the optimality proof
for the Page test is no longer satisfied. It is next shown that by using a Bayesian version of a sequential
test (the Shiryaev test), significant performance improvement is obtained compared to the K/N test.

B. Results

We compare the performance of the Page test, the Shiryaev test and the K/N rule. Monte Carlo
simulations were performed. For each hypothesis, 104 simulations were performed. Simulations under
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H0 yield the average false track life, called average detection delay (ADD). Simulations under H1 yield
the average true track life, called average run length (ARL). Results are plotted for each track termination
test over a set of threshold values. Figure 10 presents the track termination performance of each test.
Although asymptotically better than the K/N rule, the Page test performed worst over the operating range
likely to be used in a track termination module of a track management system (ADD of false tracks 4?15
scan cycles). The Shiryaev test performed the best of the three tests considered. This is likely due to the
information provided by the prior knowledge of the distribution of change times used in the Shiryaev
test. As a sequential test, the computational cost of the Shiryaev test is small and easily computable
as part of an overall track management system. The sub-optimality of the Page test was not expected.
Examination of the assumptions used in the optimality proofs of the Page test show that the increments
of the cumulative sum must be i.i.d. [1]. That does not hold in this situation.

IV. DISTRIBUTED LEARNING

A. Background

Distribution-free or nonparametric inference is a well-established discipline. In the case of the so-
called supervised learning, the idea is to build the final inference using a training set {(Xi, Yi)}ni=1

of available i.i.d. (independent, identically distributed) “examples”. Specifically, after observing X0, the
goal of the system is to infer what is the “corresponding” Y0, exploiting the fact that (X0, Y0), while
it is independent of the training set, has exactly the same joint distribution of each example (Xi, Yi),
although such distribution is completely unknown. To fix terminology, let us say that Y0 ∈ R is called
the response variable, while the collected X0 ∈ Rd is termed the observation variable. Also, we here
work with continuous random variables.

In the context of distributed inference systems it is usually assumed that the training set is disseminated
through the network (assume, for simplicity, that sensor i owns the single example (Xi, Yi)) and the
problem arises of the interplay between the necessity of making available the examples to a common
site (the fusion center, FC), and the presence of communication constraints [20], [21]. These latter can
be in terms of sensors’ energy, channel impairments (e.g., noise, interferences, lack of phase coherence,
fading), computational capabilities, and so on.

Complying with the standard assumptions in sensor network applications we assume that the commu-
nication links are asymmetric: the communication from the FC to the sensors is essentially unconstrained,
such that X0 is perfectly recovered by the nodes, while on the other hand strict communication constraints
act on the sensors’ side, due to, as already said, their typical limitations in terms of available energy and
hardware/software complexity.

Recently, the authors of [21] showed that a consistent fusion rule can be devised, for the specific
case of the classical naive kernel estimator, which amounts to compute the empirical mean of the
Yi’s corresponding to those samples in the training set that lie in a circumscribed neighborhood of
the observation X0. This means that each sensor knows if its example must be delivered or not (actually
only the “labels” Yi are delivered), regardless of all other examples (Xm, Ym), m 6= i. In the same paper,
however, it is noted that implementing the NN regression rule is challenging because, in that case, the
estimator exploits the k examples that are closest to X0, i.e., it uses the k values Yi corresponding to
the k smallest values of the norm ‖Xi−X0‖. The information available to each sensor is insufficient to
decide whether or not its example should be delivered to the FC. In [18] we show that this challenging
problem can be solved: capitalizing on a smart idea originally proposed in [5], and further developed
in [4], we are able to implement the NN fusion rule in a fully decentralized way such that universal
consistency of the regression rule is ensured.

Issues in Data Fusion 

6 - 14 STO-EN-IST-155 



We have addressed the emerging problem of distributed learning in wireless sensor networks. Our main
focus has been to extend the currently available results on the subject basically in two directions. We
propose: (i) distributed NN regression rules; and (ii) strategies achieving universal consistency over noisy
channels. The key enabler for distributed NN regression is the “ordered transmission” scheme from [5].
The main results found in this paper can be so summarized:

• We design an access policy such that the FC recovers exactly those labels it needs for the inference
task. This is done without inter-sensor coordination.

• A single-tranmission NN regression rule is proposed, achieving an asymptotic performance of twice
the MMSE.

• A general scheme for kn-NN consistent regression rules with quantized labels is devised, which can
be implemented in a distributed fashion. This strategy is studied in both the noiseless case, and in
the case that the links connecting the remote sensors to the FC are modeled as independent BSCs.
Notably, the proposed algorithms do not require knowledge of the channel noise parameters, and
do work in the absence of channel state informations. They require only knowledge of the error
probabilities of the BSCs.

• We introduce the concept of uncoded kn-NN consistent regression rules, and propose two possible
implementations suited for coherent and noncoherent channel models, respectively; numerical ex-
periments show that, in both implementations, the uncoded schemes can outperform the previously
considered coded ones. Again, remarkably, the proposed algorithms do not require knowledge of
the channel noise parameters, and work well without needing channel state information (needless to
say, in the coherent case, the phase information is assumed to be retrievable). Only the first (resp.,
second) moment of the fading distribution must be known at the receiver for the coherent (resp.,
noncoherent) scenario.

While the attention has been focused on NN rules, some results found in this paper appear to be
generalizable to other regression rules, such as, e.g., the distributed naive kernel proposed in [21]. These
results include the general procedure for preserving consistency over BSCs, and the idea of uncoded
communication for distributed regression.

B. Classical Nearest-Neighbor Regression

In the distribution-free approach to statistical inference, a classical way to build estimators relies upon
the so-called local averaging regression functions [17]:

n∑
i=1

Wni(x0)Yi, (24)

where the weights are functions of x0 and of the observation variables in the training set, namely,
X1, X2, . . . , Xn. Within this class, a major role is played by the NN rules, which are now briefly
summarized.

Let us introduce some notation. All throughout the paper, the probability density function (pdf) and
the cumulative distribution function (cdf) of a random variable X will be denoted, respectively, by fX(x)
and FX(x). The pdf of the observation-label pair (X,Y ) is accordingly fXY (x, y).

For x0 ∈ Rd, let: (
X(1,n)(x0), Y(1,n)(x0)

)
, . . . ,

(
X(n,n)(x0), Y(n,n)(x0)

)
,

be the sequence of pairs ordered according to

‖X(1,n)(x0)− x0‖ ≤ · · · ≤ ‖X(n,n)(x0)− x0‖,
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where ‖ · ‖ denotes the standard Euclidean norm in Rd, and, again, n is the training set cardinality. In
our model, ties will be excluded by the assumption of continuous random variables. The NN regression
rule can be now formalized as [17]:

1

kn

kn∑
i=1

Y(i,n)(x0),

so that the weights in (24) are

Wni(x0) =


1

kn
, if Xi is one of the kn-NN of x0,

0, otherwise.

(25)

In the above, the notation kn is used because the number of neighbors might depend on the number of
observations n. Of particular interest is the case that n, kn → ∞ while kn/n → 0, because, with this
choice, the NN regression rule achieves consistency [17]. In the following, we shall also consider the case
that kn = const., with emphasis on the extreme case kn = 1, i.e., only one (but the most informative)
label is used.

C. Nearest-Neighbor Access

Let us now focus on the decentralized implementation of a local averaging regression function. To
this aim, we note that in eq. (24) the effect of the response variables Yi is decoupled from that of
the observation variables Xi, which are contained only in the weights Wni(x0). In addition, in the NN
rule (25), the weights exhibit an on-off structure, which immediately suggests a convenient way to manage
the access to the channel that is necessary in the decentralized setup: only those sensors with nonzero
weights should convey information toward the FC. This yields as a fundamental design guideline the
following decoupled approach: the access policy is designed to reproduce the weights at the FC, while
the data coding strategy acts only on the relevant labels Yi to be transmitted.

In the simplest case of the naive kernel, this idea directly translates to the scheme of distributed
regression with abstention employed in [21]. There, the event that the i-th label must be considered for
estimation depends only on the i-th observation (and on X0), such that abstention is determined by a
locally available knowledge. In the case of NN regression functions of our interest, this is no longer
true, leading to the difficulty quoted from [21]. To overcome this issue, with the general “decoupling”
philosophy in mind, a different access policy specifically tailored to the NN rules must be conceived.

The transmission scheme for implementing kn-NN-based rules works as follows, see Fig. 11. The
i-th sensor computes the local distance between the observation Xi available in its own example, and
the measurement X0, namely ‖Xi − X0‖. After that, it sends its own label Yi over the channel, at a
transmission instant which is directly related to the distance ‖Xi −X0‖. The time-origin of the network
is set when the sensors receive a broadcast message from the FC (for example, when X0 is received), and
we assume that the time scale of the system is such that differences in the transmission delays between
different sensors and the FC can be safely neglected. Also, once that the desired number of labels have
been received, further transmissions by the sensors are inhibited by means of a broadcast stop message
sent by the FC.

In this way, sensors having collected observations with smaller distances from X0 transmit first, so that
the FC receives the labels Y(i,n)(x0), i = 1, . . . , kn, i.e., the labels are just ordered in terms of the desired
NN criterion, and only the first kn labels are sent. Otherwise stated, the FC is able to compute the weights
relevant for the evaluation of the regression function (24), and this is obtained without transmitting the
value of the observation variables Xi. The messages sent over the channel are the labels Yi’s. The specific
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Fig. 11. Distributed learning with NN access. The i-th sensor decides to transmit its label Yi, accessing the channel medium at
a time instant which is based upon the observed distance ||Xi−X0||. This allows the FC to recover the labels ordered according
to the desired kn-NN criterion.

way to convey this information toward the FC, coping with the communication constraints, is discussed
in [18].

Note that the procedure described is based on a cross-layer approach, mixing the layers of commu-
nications and inference: sensors attempt to access the channel in a random fashion, but at specific time
instants related to the quality of their data for the final inference.

Before going on, a key point to be emphasized concerns the access policy: As n grows, the distances
‖X(i,n) − X0‖ shrink to zero, and therefore it can be difficult for the FC to identify correctly the first
kn deliveries and to stop further transmissions. To avoid these difficulties, the distances ‖X(i,n) −X0‖
must be properly scaled by a proportionality factor depending upon n, in order to make successive
transmissions sufficiently spaced apart. In our distribution-free setup, this is particularly challenging, in
that a universal scaling law must be found, namely, one valid for any observation model.

D. Numerical examples

The results of computer experiments are now described. We consider the following example:

X uniform in [−2, 2],

Y = r∗(X) +
E√

VAR{E}

√
MMSE,

where the optimal regression function r∗(x0) is chosen as shown in Fig. 12 (see inset), that is, the
concatenation of a sinusoidal and a triangular wave. In the above, the error term E is a mixture of a
zero-mean Gaussian and a symmetrized Weibull distribution, with pdf:

fE(x) = λN (x; a1) + (1− λ)W(x; a2, a3),

where N (x, a1) is the pdf of a zero-mean Gaussian with variance a2
1, and W(x; a2, a3) denotes the pdf

of a symmetrized Weibull distribution with scale parameter a2 and shape parameter a3, namely:

W(x; a2, a3) =
1

2

a3

a2

(
|x|
a2

)a3−1

exp

{
−
(
|x|
a2

)a3
}
.
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Fig. 12. Single-transmission NN strategy, applied to the estimation problem (26), with parameters a1 = 0.1, a2 = 1, a3 = 0.9,
MMSE= 1/4, for two values of the mixing probability, namely, λ = 1 and λ = 1/2. In the inset box, the optimal regression
function r∗(x0) (bold line) is displayed, along with samples (circles), corresponding to different Monte Carlo runs, of the
regression function Y1,n(x0) estimated by n = 104 training set examples. In the main plot, the MSE performance of the
distributed strategy, estimated over 104 Monte Carlo runs, is compared to the asymptotic limit of 2×MMSE (shown as a straight
line).

Without any pretence of exhaustiveness, we adopt the above mixture model in order to appreciate how
the system performs in the presence of deviations from a typical scenario, such as the Gaussian one. In
the following, we report the results arising from two cases, corresponding to λ = 1 (purely Gaussian)
and λ = 1/2 (Gaussian/Weibull half-mixed). The employed parameters are a1 = 0.1, a2 = 1, a3 = 0.9,
and MMSE=1/4.

In the forthcoming analysis, we first investigate the estimation performance of the proposed schemes,
and then focus on the transmission issues. Let us start by exploring the unquantized, single-transmission
strategy. The box panel in Fig. 12 displays the optimal regression function (bold line), along with the
surrounding cloud of points representing the estimated regression function observed in a number of
Monte Carlo trials. As it can be seen, the system is able to learn the shape of the optimal regression
function, and the spread about the true regression function yields the MSE performance shown in the
figure, reaching the asymptotic limit of 2×MMSE (horizontal line), even for moderately large values of
n, in the order of a few tens. Here, as already pointed out in the theoretical analysis, we basically work
under the assumption that the communication protocol affords the FC perfect recovery of the NN label,
so that the above findings are expected from the standard theory of NN estimation [13].
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